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The general theory of n-beam X-ray diffraction (n > 2) has been developed in the framework of classical 
dynamical theory and applied to the Bragg case. It is shown that the crystal wave-vectors are the eigen- 
values of a 4n x 4n dispersion matrix. The boundary conditions are applied to a parallel-sided crystal 
slab and show that for an infinite thickness only 2n wave fields survive. The Umweganregung plot of 
Ge(222) with Cu Ke radiation has been considered in detail. The integrated intensity of an Umwegan- 
regung peak is defined here as a double integral with respect to 0 (angle of incidence) and ¢p (azimuthal 
angle). The 222-113 and 222-i"i"3 absolute integrated intensities were measured on a dislocation-free 
Ge crystal. Excellent agreement is obtained between experimental and calculated values. The ratio 
between the two integrated intensities (of the order of 7) did not change appreciably for a Ge mosaic 
crystal, although both reflections exhibited increases with respect to the perfect-crystal values. Since the 
two Umweganregung peaks considered in this experiment involve crystallographically equivalent re- 
flections with different phases, it is suggested that the present technique can in principle be used for 
phase determination in crystal structure analysis. 

Introduction 
The inability to extract phase information in a diffrac- 
tion experiment is commonly referred to as the 'phase 
problem'. A common statement frequently found in 
the literature is that only the magnitudes IF,~l of the 
structure factors can be determined, essentially because 
present experimental techniques are able to measure 
intensities, not amplitudes. Indeed, when the restric- 
tions imposed on the charge density 0(r) are taken into 
account, the phase problem can be analytically solved, 
at least in principle (Karle, 1964). Mathematical com- 
plexities, however, frequently arise, especially in the 
case of non-centrosymetric crystals, so that we can still 
talk of a 'phase problem'. 

The idea of extracting phase information from a 
scattering experiment is indeed one of the fundamental 
problems in metrology. This point has been discussed 
extensively by Goldberger, Lewis & Watson (1963), 
who also have made some interesting suggestions on 
how this could be done. The idea is to irradiate an 
object from two different, independent sources and 

* Work supported by the National Science Foundation 
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measure simultaneously the correlation in the intensity 
fluctuations in the two detectors. It is interesting to 
note that one of the experiments proposed by these 
authors is based on multiple diffraction of X-rays. 

A new physical method for phase determination has 
been recently proposed, in which use is made of re- 
coilless nuclear resonance fluorescence of y-radiation 
(Parak, M6ssbauer, Biebl, Formanek & Hoppe, 1971). 
This method looks promising, although it is limited to 
crystals containing 57Fe in their cell, or another suitable 
M6ssbauer scattering center. 

The fact that in multiple diffraction the intensities of 
the diffracted beams are affected by the relative phases 
of the structure factors involved was recognized long 
time ago (Lipscomb, 1949; Fankuchen & Ekstein, 
1949). An intuitive consideration immediately suggests 
that this is the case. In fact in two-beam diffraction the 
crystal wave vectors, eigenvalues of the dispersion 
matrix, involve only the products FnFa, which are real 
if absorption is neglected,'[" whereas in n-beam diffrac- 

t When absorption is important the products FHFn are 
no longer real and the phases do play some role on the inten- 
sities. This is the basis of a well known traditional method 
of phase determination. 
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tion the relation between eigenvalues and structure 
factors is more complicated, and the phases do not 
cancel out in general. 

Multiple diffraction of electrons in relation to the 
phase problem has been treated in some detail by 
Kambe (1957). 

The X-ray case has received comparably less atten- 
tion, mainly because of inherent complexities asso- 
ciated with polarization effects and the boundary con- 
ditions. An attempt was made some years ago by Hart 
& Lang (1961) who observed the displacements of 
Pendell/Ssung fringes when a third beam was excited in 
a Ge crystal. Their interpretation was based on an 
approximate theory obtained by adapting an electron 
diffraction dynamical theory to the X-ray case. 

In recent years numerous treatments of multi- 
beam cases have appeared in the literature* (Saccocio 
& Zajac, 1965; Hildebrandt, 1967; Joko & Fukuhara, 
1967; Ewald & H6no, 1968; H6no & Ewald, 1968; 
Penning, 1968; Penning & Polder, 1968; Dalisa, Zajac 
& Ng, 1968; Balter, Feldman & Post, 1971, and many 
others). In all these papers only the Laue case of diffrac- 
tion was considered, because the authors' attention 
was concentrated on the enhancement of anomalous 
transmission occurring in some multi-beam cases 
(double Borrmann effect). 

On the other hand, the Bragg case of diffraction is 
frequently used in multi-beam work, particularly when 
the azimuthal-scan technique is used. In this technique 
the crystal is rotated around the diffraction vector 
associated with a given set of lattice planes (hkl), and 
the angle of incidence 0 is constant for the hkl reflec- 
tion in the symmetric Bragg case. As the azimuthal 
angle ~0 is varied, it is possible that one or more nodes 
in reciprocal space lie on the Ewald sphere simulta- 
neously with hkl, thus affecting the hkl intensity. These 
effects are very strong when the hkl reflection is weak, 
as observed by Renninger (1937) in the case of the 222 
in diamond. This geometry looks favorable for 
studying phase effects, because the boundary condi- 
tions are the same for all the Umweganregungt peaks 
if the crystal surface is parallel to the (hkl) planes. 

The (222) azimuthal plot of germanium with Cu Kc~ 
radiation has been investigated in detail by Cole, 
Chambers & Dunn (1962). A glance at Fig. 6 of their 
paper immediately shows the importance of the phase 
effect. This figure reproduces in detail a portion of the 
222 Umweganregung plot, and it is apparent that two 
crystallographically equivalent planes, (113) and (113), 
whose structure factors differ only by phase with 
respect to 222, produce peaks with different intensi- 
ties. This simple observation shows that a theory able to 
correlate structure factors with intensities in Umweg- 
anregung plots, if available, could be used for phase 
determination, at least in principle. 

* Only dynamical treatments are considered in this paper. 
t 'detour radiation'. Name given by Ewald to the extra 

peaks observed by Renninger in diamond under the conditions 
of simultaneous diffraction. 

Moreover, the Bragg case of diffraction is frequently 
used for accurate determination of structure factors 
via integrated intensities from perfect crystals. In these 
cases the occurrence of multiple reflections is usually 
considered a nuisance and suitable experimental con- 
ditions are sought in order to eliminate this effect 
There are situations, however, in which this is not 
possible or convenient, and one would like to make 
quantitative estimates. Although it is commonly 
accepted by crystallographers that weak reflections are 
more sensitive to multiple diffraction effects than 
strong reflections, there are no rigorous criteria, at 
present, for deciding which reflections can be affected 
by Umweganregung, especially in the case of perfect 
crystals. For instance, in the experimental part of this 
work no effect whatsoever (within 1%) was found in 
reflections such as 400, with Co Kc~ radiation, in 
germanium. These considerations show that a detailed 
theoretical treatment of the problem is in order, with 
the specific aim of setting up a computational proce- 
dure for the Umweganregung peaks. Such a theory 
will be described in detail in the next section, and will 
then be compared with experiment. 

2. Theory and computational methods: infinite crystal 

In an infinite crystal the total wave field can be ex- 
pressed as a superposition of vector plane waves, whose 
wave vectors are all related by reciprocal-lattice vectors 
[see, for instance, §§ III-8 and 9 of Zachariasen 
(1945)]. It is assumed that a finite, otherwise arbitrary, 
number n of waves are excited in the crystal corre- 
sponding to those nodes, in reciprocal space, that are 
very close or lie on the Ewald sphere. These nodes 
will be denoted as H =  1 ,2 , . . . , n ,  with H = I  corre- 
sponding to the origin O. 

When these plane waves are introduced into Max- 
well's equations, the following set of simultaneous 
linear equations is obtained [see equation 3.105b of 
Zachariasen (1945)]: 

n 

(k2-,32)D, - ~jV,-:[(P, .  DJ)PJ-,B2D:l =0  (1) 
Ikl_~ 

where k0 =1/2, 2 is the wave length of X-rays in 
vacuum, pj is the wave vector associated with the j 
node, Dj is the displacement vector amplitude and ~'j 
is the Fourier component of the polarizability per unit 
volume (times 4n) associated with the same node. i can 
be equal to 1,2 . . . .  ,n so that (1) really represents n 
linear homogenous equations for the amplitudes D:. 

Equations (1) therefore represent a set of self- 
consistent conditions imposed on the plane waves 
excited in the crystal. Note that the O-beam, which will 
later be associated with the incident beam when the 
bounded crystal will be considered, does not play any 
privileged role. Its labelling merely corresponds to a 
particular choice of the origin in reciprocal space. Its 
existence is not assumed as due to an external incident 
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beam, which would be meaningless in view of the fact 
that we are considering an infinite crystal, but simply 
because we are postulating the existence of a set of 
waves coupled by diffraction. In other words , / fa  plane 
wave I]0 exists in the crystal, a set of plane wave 
ll2,l~a,...,ll, will also exist, whose wave vectors are 
related by 

I~.~ = 1~o 4, B j ,  (2) 

[~j being reciprocal-lattice vectors, and whose am- 
plitudes are related by equations (2). 

Dividing by fl~ and rearranging some terms one 
obtains 

n 

[ k Z / f l z - ( 1 - ~ o ) ] D , -  ~ ' W , - j [ ( u t .  O j ) u , - D j ] = 0  (3) 

where the prime near the summation sign indicates 
that the term corresponding to j = i  is omitted, and u~ 
are unit vectors directed as I]i. 

At this point an assumption is introduced in tradi- 
tional treatments of dynamical theory. Since fit and k0 
are very close, differing only by a few parts in 10 -5, the 
first factor in brackets of equation (3) is usually written 
as (V0-2fi~) where 6~ + 1 is the refractive index for the 
i wave. Since each 6i can be linearly related to ~0, the 
above process is equivalent to a linearization of the 
dispersion equations, that is to say, each equation (3) 
becomes a linear function of 60. In this process half of 
the solutions are thrown out of the problem, which is 
perfectly legitimate in most cases because these solutions 
correspond to plane waves of negligible intensity. This 
is not the case, however, when an intense diffracted 
beam is excited parallel to the surface, a situation not 
at all exceptional in multi-beam diffraction.* This point 
will be further clarified later on, when the boundary 
conditions will be discussed. We will therefore retain 
the first bracketed factor of (3) in its present form. 

Every vector equation (3) gives rise, in principle, to 
three scalar equations. The displacement vectors D~, 
however, are bound to be normal to the wave vectors 
11~, which are fixed by the geometry of the crystal 
lattice. This restriction reduces the total number of 
scalar equations derived from (3) to 2n. For every wave 
vector I~ we will consider two orthogonal unit vectors 
,~ and n;, both normal to I~, defined in the following 
way: 

o'j = U./× Uo/lUj x Uo[ ( j = 2 , 3 , . . . , n )  (4) 

~:,/= uj x % ( j =  1 ,2 , . . .  ,n) (5) 

where uj = ~j/flj and e0 is arbitrarily chosen parallel to a 
particular direction normal to u0.? 

When the ith equation (3) is scalarly multiplied by 

* Such a condi t ion is frequently found,  for example, in 
the 002 Umweganregung  pattern of d iamond  structures. The 
strongest  peak of  the series, the 002-111, is in this category. 

1" In practical calculations 60 was chosen parallel to the 
crystal surface. 

n~ and th respectively ( i= 1 ,2 , . . . ,n ) ,  the following set 
of scalar equations is obtained: 

[kZ/fl~ - ( 1 -  Vo)]D.~ 
n 

4" ~ j~l/i-j(Djno~jl 4" Djao~ji)=O (6) 
1 

[k~/fl~- (1 -  ~'o)]D,~ 
t l  

4- ~'jV,_i(Dj,~o~j7 4- D j ~ ) = 0  (7) 
1 

cz.nq = where Di==D~. n~, Dt~=Dt .  try, c~y~=Ttj, rtt, -,a 
~ .  %, ~ = % .  ~ and ~ 7 = ~ .  nj. 

Equations (6) and (7) form a system of 2n homo- 
geneous linear equations for the unknown amplitudes 
D~ and D~,. If we consider as variable the magnitude 
of the wave vector P0 (or its projection along an arbi- 
trary direction), this system has nontrivial solutions if 
the determinant is zero, which gives rise to a discreet 
set of 4n eigenvalues fl0~. * 

The associated determinantal equation can be 
written: 

IA +TI =0  (8) 

Matrix A can be defined by means of four submatrices 
of n-order: 

P Q 

where P u = S u = v 0 - 1 ,  Q u = R u = O ,  P u = v t - J ~ f ,  
Qtj an ~ = ~ (l # j ) .  = ~[/t-jO~jl, RI j  = Iffl-jO'~jt, St j  lift-jO~jl 

Matrix T is a diagonal matrix whose elements are: 
T i t  2 2 =ko/f l j  , with j = i  if i=  1 ,2 , . . . , n ,  j = i - n  if i=  
n 4. 1, n 4. 2 , . . . ,  2n. We will now try to transform equa- 
tion (8) in order to get a linear equation with respect to 
?0, projection of P0 along an arbitrary direction.? 

Let us first consider the matrix ×, inverse of A. If we 
multiply equation (8) by X (on the right side), and then 
by T -1=  C (on the left side), we get 

IC+Xl=O (9) 
where C,=fl~/k~ and Cu=O (iCj). Every term Cu is a 
second-order polynomial in 70. 

It can be shown that C can be written as a sum of 
three matrices : 

C = 7o21 + 7oC~ + Co (9') 

where C1 and Co are diagonal matrices. Therefore the 
determinantal equation can be written as a second- 
order matrix polynomial: 

l~'oq - V~,o + B I - - 0  ( I 0 )  
. , -  

* Strictly speaking, the ~'s are not  constant  quantities, since 
the directions uj are affected by index of refraction effects. The 
same approximat ion  is used in convent ional  two-beam dyna- 
mical theory (see, for instance, Zachariasen,  1945, p .  117). 

t In practical calculations the inward normal  to the entry 
surface of the crystal was chosen. 

A C 30A - 8 
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where I is the identity matrix, V = - C1 and B = Co + X. 
It can be shown (see Appendix) that the solutions of 

equation (10) are the eigenvalues of a linear deter- 
minantal equation: 

IO-yo l l=O (11) 

where O is a 4n x 4n matrix given by 

O - - ( V  - B ) ,  0 

and 0 is the null matrix. 
The problem of determining the eigenvalues of the 

dispersion equations (6) and (7) is therefore reduced to 
that of inverting the 2n x 2n A matrix and diagonalizing 
the 4n x 4n O matrix. The eigenvalues can now be deter 
mined by means of standard methods for which com- 
puter programs are available. 

The eigenvectors associated with equation (8) are 
also those of the system from which equations (9) and 
(10) are derived. It is shown in the Appendix that these 
eigenvectors are the first 2n's of those associated with 
equation (11). 

The eigenvectors are usually provided by the same 
routine used for computing the eigenvalues and there- 
fore the n-beam problem in the infinite crystal is com- 
pletely solved. The various components of the displace- 
ment vectors D~ are determined only on a relative basis, 
however, because the dispersion equations (6) and (7) 
are homogeneous. There are 4n different sets of eigen- 

n I = values. Each set is normalized to unity (~j D~.] 2 1, 
J 

1 

l =  1 ,2 , . . . ,4n) .  Each eigenvalue corresponds to a set 
of plane waves forming a wave field. In the infinite 
crystal the strength of every wave field has been arbi- 
trarily set equal to one. In real cases, however, we will 
consider a finite crystal and the boundary conditions 
will determine the strengths of the various wave fields. 
More specifically, the total displacement vector in the 
crystal is written as: 

4n H 

-@(r) = ~ ,q ,  ~ jDJ  exp ( -2n ip~) .  r (12) 
1 1 

where the q~'s are 4n unknown coefficients to be deter- 
mined by means of the boundary conditions. 

3. Theory and computational methods: 
boundary conditions 

The boundary conditions for an electromagnetic wave 
propagating through the surface between two different 
media require continuity for the tangential components 
of the electric and magnetic intensities (E and H), and 
for the normal components of the electric displace- 
ment and magnetic induction (D and B). The latter 
conditions, however, are not independent from the 
former, so a total of four scalar equations are to be 
satisfied for each plane wave j [see, for instance, Jeans 
(1933)1. 

Ultimately, only the components of the displace- 
ment vectors will be involved in the final equations, 
through the relations: 

Hj=(ko/~j)uj x Dj 
Ej=(k~/~j2)Dj . 

Let us consider a crystal slab of infinite lateral extent, 
finite thickness t, dividing the vacuum space into two 
regions, an 'upper'  region where the incident, specu- 
larly reflected and diffracted beams are propagating, 
and a 'lower' region where only transmitted beams are 
travelling. In this treatment no distinction is made be- 
tween Laue and Bragg beams, because such a distinc- 
tion becomes meaningless for beams travelling almost 
parallel to the crystal surface. In this situation it may 
easily happen that within the same beam j,  the associ- 
ated plane waves p} have positive or negative normal 
components, which makes it impossible to classify the 
j beam as a Bragg or Laue beam. For each beam j 
(other than the O beam) we will assume the existence 
of n vacuum reflected waves, travelling in the upper 
region and n vacuum transmitted waves, travelling in 
the lower region.t 

For each beam j the associated reflected and trans- 
mitted waves have the same tangential components 
whereas the normal components differ only by sign. For 
the purpose of a physical interpretation of these vacuum 
waves, let us for a moment re-introduce the distinction 
between Bragg and Laue beams on an intuitive basis, 
neglecting the case of beams almost parallel to the 
crystal surface. For Bragg beams the reflected waves 
in the upper region are the diffracted waves and so are 
the transmitted waves in the lower region for Laue 
beams. Less clear is the physical meaning of the re- 
flected waves associated with Laue beams and of the 
transmitted waves associated with Bragg beams. At this 
point we must recall that half of the solutions of the 
secular equation (8) correspond to waves whose am- 
plitudes increase downwards into the crystal, whereas 
the other 2n waves have decreasing amplitudes. The 
same circumstance has been observed in treating the 
case of n-beam diffraction of high-energy electrons 
(Colella, 1972a; see § 4) and the reason for this 
is the same in the X-ray case. This is valid for any j 
beam, whether it is a Laue or Bragg beam, because all 
the wave vectors associated with the same eigenvalue 
have the same imaginary part. It is not unreasonable, 
therefore, to assume the existence of a reflected and 
transmitted wave for any j beam, whose wave vectors 
are defined by equations (13) and (14). The O beam is 
treated in the same way, except that in addition we have 
a beam travelling toward the crystal of unit amplitude 
(the incident beam). This treatment of the boundary 

t Had we adopted a linearized form of the dispersion equa- 
tions (see {} 2), we would have a total of 4n unknowns in 
the problem: 2n ql's and 2n vacuum amplitudes. In such a 
situation we would be obliged to distinguish between Bragg 
and Laue beams, and would therefore be unable to handle the 
case of a j beam travelling parallel to the surface. 
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conditions is almost identical to that developed for n- 
beam electron diffraction (Colella, 1972a), the only 
difference being that in this case we have vector waves 
instead of scalar waves. [See also Lamla (1939).] 
Within the crystal the total electric displacement is 
described by equation (12). The vacuum wave vectors 
are given by: 

k~ =kg + B~ (13) 

where kg and k} are the tangential components associ- 
ated with the incident and diffracted waves, respec- 
tively, and B} are the tangential components of reci- 
procal-lattice vectors. The normal components are 
fixed by the condition: 

Ikol-Ikjl = 1/2 (14) 

Within the crystal, for each beam j, there are in general 
4n distinct directions given by the eigenvalues of the 
dispersion equations (6) and (7). Since there are four 
equations for each beamj  on both surfaces of the crys- 
tal slab, we have a total of 8n equations with 8n un- 
knowns: the 4n coefficients ql in equation (12) and the 
4n components of the electric displacement vectors 
projected on the entrance and exit surface of the crys- 
tal. 

A linear system of simultaneous equations 8n × 8n 
can therefore be written, whose solutions give at the 
same time the strengths qt of the Bloch waves in the 
crystal and the amplitudes of the vacuum waves. With- 
in each group of the four equations associated with the 
same beam j on each surface it is possible, however, 
to eliminate the two components of the electric dis- 
placement, so that ultimately we are left with a 4n × 4n 
system whose unknowns are the q~'s. 

(a) O-Beam. Entrance surface 

(1 sin01 1 ) 
~aqlD~ do + sin 0 ]/e~ =~" 

~,lqtD~,~(_~e~ s in0 '  1 )  
+ s in0 eo z = a = .  (15) 

In these equations D~= and D~, are the normal and 
tangential components, respectively, of the crystal dis- 
placement vector associated with the lth wave field, 
1/do is the lth dynamical refractive index, 0 is the angle 
of incidence in vacuum and 01 - 0 is the angular change 
due to refraction for the same wave field, a~ and a= are 
set equal to 2 and 0 for normal polarization, and to 0 
and 2, respectively, for parallel polarization ( 'normal'  
and 'parallel' with respect to a plane defined by the 
normal n and the incident beam k0). 

(b) j-Beam. Entrance surface ( j =  2, 3 , . . . ,  n) 

1 1 ) ]  
+D~, \ aj,  [ ax = 0  (16) 

gj 

\] 

In these equations D},, D~o and eJ are the corresponding 
quantities, for t he j  beam, of those introduced in equa- 
tions (13) and (14) for the O-beam. The lth dynamical 
index of refraction for the j beam is indicated as l/e~, 
and ,,l ,,l ,~l ,,1 • ~j,, ,~j:,, ,,sz, ~,J:, are components of two sets of 
unit vectors n~ and oJ along two orthogonal directions 
x and z parallel to the crystal surface. For each beam 
j a set of directions u~ i t (=llj/flJ) can be defined using 
equation (2) if the angle of incidence 0 and the eigen- 
values of equation (11) are known. The two unit vec- 
tors n) and 6J are mutually perpendicular, both normal 
to pJ, and defined by the following relations (for 
convenience): 

6jl__ ujl x ug/lu} x ugl (18) 
l__ l / ~ j -  IJj × O~. 

The z axis is chosen to be normal to the plane defined 
by k~ and n (unit normal to the crystal surface pointing 
inward), so that the choice of the x and z axes is dif- 
ferent for eachj  beam. z0~ is the x projection of a unit 
vector n3, normal to the z axis and to a vacuum wave 
vector k2=kt-n(1/)~2-k~2)l/2.~ 

(c) O-Beam. Exit surface 

1 sin 01 1 ) 
~aqlClDg~ , do sin 0 l/e0 t = 0  

( 1  sin01 1 ) 
~1qICID~ [/e~ sin 0 e~ = 0  (19) 

where C1= exp (-2z~iyzot) and y~ are the normal com- 
ponents of the crystal O-beam, eigenvalues of the 
secular equation (8). 

(d) j-Beam. Exit surface ( j--  2, 3 , . . . ,  n) 

S_,qlC,D~ ( z~zJz a~ 1 )  
•j 

OSz ' 1 1 (7+ "'" I j =0 + 
1/4 

[~r~. zc~x 1 
+ .,-: 

+DJ. (-rc~" a;x I)]--0-~+~>, e; . (21, 

The set of equations (15), (16), (17), (19), (20) and (21) 
form a set of 4n linear equations with 4n unknowns 
(the qz's). The intensities of the various waves can 
therefore be determined by solving this system. It can 
be shown that for ordinary thicknesses (t ~ 1 mm) half 

]" W h e n  the  r ad i cand  is negative,  kf. co r r e sponds  to  a beam 
whose  intensi ty  is ex t ingu ished  a few A away  f r o m  the surface 

A C 30A - 8* 
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of the q,'s vanish, and that the equations on the exit 
surface do not need to be considered. The method of 
elimination is entirely analogous to that described in 
the case of electron diffraction (Colella, 1972a; 
§ 4) and will not be repeated here. With X-rays, 
however, the absorption is not so high as in the case of 
electron diffraction, and we are not considering only 
diffraction at glancing angle. This means that in the X- 
ray case we may have to retain some of the equations 
(19), (20) and (21). If the eigenvalues are ordered in 
such a way that their imaginary parts are in increasing 
order,* a careful analysis will show that: (i) the number 
k of non-vanishing q~'s (2n < k < 4n) depends on 
whether or not the ratio Ck+~/C k exceeds a certain 
value, say exp (15); (ii) the number /max of non-zero 
q,'s is determined by computing the ratio Ck+I/C* for 
k=2n,  2 n + l ,  2n+2,  . . . ,  4n; (iii) when this ratio is 
found greater than exp (15)/max is set equal to k. Except 
for a few particular cases of very thin crystals,/max has 
always turned out to be equal to 2n. Once the qz's are 
determined, the boundary conditions on the entrance 
surface for the j vacuum reflected amplitude give: 

l l "~@3n = ~ t q l ( O J n q j z  - Dtja 7[ljz] " "~ (~j)l -1/2 
l l ~ = ~,q,(Dj,~njz + D~a~z) . (eJ) 1 (22) 

where -~,~ and . ~  are the parallel and perpendicular 
components, respectively, of the j reflected beam in 
vacuum (the plane of reference is defined by the normal 
n and the reflected beam k i = k~. - n .  (2-2 _ kt2]l/2 . . : ,  . The 
intensity is given by: 17 =1~3=12+1~j~1 z. Two sets of 
qfs are determined, for the two polarization states of 
the incident beam. The final intensity of the j beam is 
given by: 

17 ~---~perpI~ perp'a t- ~par~  ar (23)  

where (Xperp and O~pa r are the fractions of perpendicular 
and parallel components, respectively, of the incident 
beam. When the boundary conditions are applied on 
the exit surface, equations similar to (22) are obtained 
for the vacuum Laue diffracted beams. 

4. Experimental procedures and comparison with theory 

In comparing theory with experiment, one is tempted 
to use the theory described in the previous two sections 
in order to reproduce an azimuthal plot such as that 
obtained by Cole, Chambers & Dunn (1962). One 
major difficulty, however, becomes immediately ap- 
parent. Each point of an experimental azimuthal plot 
is referred, in principle, to particular, well defined 
values of the angle of incidence 0 and the azimuth rp. In 
practice, however, because of the finite divergence of 
the incident beam, each point should be more properly 
referred to finite intervals of 0 and ~0 values over which 
the n-beam reflectivity is integrated. Such integrations 

involve the structure of the incident beam (intensity as 
a function of 0 and rp) which is difficult to evaluate. A 
more precise way of  characterizing an azimuthal plot 
seems to describe the intensity of  each peak by a number 
which represents a doubly integrated intensity over 0 and 
f0. By 'integrated intensity' we will mean therefore, 
from now on, the following dimensionless quantity: 

R~h'k'Z',-- I I ,,,k, , -  I~ (0,~0)d0d~0 (24) 

where 17 (0,~0) has been defined by equation (23) and 
the Miller indices in parentheses indicate the two beams 
excited simultaneously with 000. The three-beam case 
only has been considered in comparing theory with 
experiment because it is the most suitable for phase 
identification and the computing time is reasonable. 

(a) Experimental. 222-113 and 222-]-i3 integrated 
intensities 

A double-crystal spectrometer in the antiparallel 
arrangement was used in this experiment. Both crystals 
were cut parallel to the (11 l) planes within 10 minutes 
of arc from a p-type germanium ingor~ with an im- 
purity concentration inferior to 1016 cm -3, as measured 
by Hall effect at 77 °K. The crystals were ground with 
400-600-1200 and 3200 SiC powders on glass and 
etched for 3-4 min in CP4 (5 parts HNO3, 3 parts HF, 
3 parts of acetic acid and 0.06 parts of bromine) at 
room temperature. No dislocation pits were visible 
after etching. The first crystal was diffracting in the 
333 position and a slit was positioned between the 
two crystals so that K~2 was eliminated and the vertical 
divergence (normal to the diffraction plane) was of the 
order of 30'. A proportional counter with single- 
channel analyzer was used in order to discriminate 
against high-energy harmonics. Absolute values of 
integrated intensities were obtained by measuring the 
power of the X-ray beam after the first crystal by means 
of calibrated filters. Cu Ka radiation was used through- 
out these experiments. 

The quality of crystal perfection was checked by 
comparing the 333-333 rocking curve with a theo- 
retical profile obtained using dynamical theory. The 
integrated intensity of the rocking curve differed from 
the theoretical value by 2-3%,  but the width was 
different for various regions of both crystals, ranging 
from the theoretical value (~6" )  to 7.5". This is an 
indication that our dislocation free crystals still con- 
tained some kind of imperfections, probably slight 
inhomogeneities in impurity concentration. 

When the integrated intensity of 'Umweganregung' 
peaks is to be compared with theoretical values, the 
'true' 222 is involved in the calculations. This for- 
bidden reflection was therefore measured in absence 
of simultaneous reflections, and its value was found to 

* The ordering procedure here is opposite to that described 
in (Colella, 1972a) because of a different sign in the exponents 
of the Bloch waves. 

t Manufactured by Texas Instruments Inc., Dallas, Texas. 
The author is indebted to Professor S. Moss who kindly 
provided the Ge single clystal. 
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be 1.79 x 10 -8, consistent with a structure factor F222 = 

1.09. A similar value (1.18) was found by Renninger 
(1960). 

An absolute measurement of the 'Umweganregung' 
peak (222-113), the most intense of the azimuthal plot, 
was made by measuring several rocking curves (inten- 
sity vs. 0, angle of incidence) for different values of re, 
azimuthal angle. The second crystal was rotated by 
increments of 3.33' over an interval Arp of 53.3' centered 
on an average q)0 value corresponding to full excitation 
of the simultaneous reflection 113. The results are 
shown in Fig. 1, where R o, the integrated intensity with 
respect to 0, is plotted as a function of rp. The tails of 

R ° , i 0  -T 

4 

3 

2 

I 

o -~'5 -~o -,5 -,~ ; ~ ,~ ,~ ~'oA~_m~ou,es 
Fig. i. Experimental integrated intensity of the 222 reflection 

as a function of the azimuthal angle. Each point of this 
profile represents an integration of the crystal reflectivity 
with respect to 0, angle of incidence. Points are experimental 
values, whereas the continuous line is an arbitrary inter- 
polation. The tails tend asymptotically to the 'true' 222 
value. The abscissa A(p=0 has been arbitrarily set at the 
peak center. It corresponds to full excitation of the I I3 
simultaneous reflection. 

2.0 

0.5 

R e x l O  -s 

-6'0 

(222 - 113) 

- I i I i ~ ~ - s e c ° n d S l  
- 4 0  - 2 0  0 20  4 0  60  

Fig. 2. Calculated integrated intensity of the 222 reflection as a 
function of the azimuthal angle. Each point of this profile 
represents an integration of the crystal reflectivity with 
respect to 0, angle of incidence. The tails tend asymptotically 
to the 'true' 222 value, which is a negligible fraction of the 
peak value. The abscissa A~0=0 corresponds to full excita- 
tion of the 113 simultaneous reflection, as obtained from a 
kinematic calculation. 

this profile tend asymptotically to the 'true' 222 value 
(1-79 x 10-8). The area of this profile is the integrated 
intensity of this 'Umweganregung' peak as defined by 
equation (24). The points are measured values and the 
continuous line is an arbitrary interpolation. Two such 
measurements were performed in different experi- 
mental conditions of alignment and divergence slits. 
The R o plots were quite different, but the areas dif- 
fered only by 1.6%. Integrating over q~ is essentially 
equivalent to integrating over the vertical divergence 
of the beam. In this way the integrated intensity we 
arrive at is independent of the structure of the inci- 
dent beam, and truly represents a number which can 
be compared with theory. 

The same procedure could not be adopted for the 
222-113. This reflection is much weaker than the 
222-113, and a R o vs. ~o plot would have been too 
time consuming. It was decided, therefore, that a rela- 
tive measurement could be adequate for this work. The 
vertical divergence of the incident beam (of the order of 
30') was much greater than the intrinsic azimuthal 
width Acp over which the third beam (113 or 1--13) was 
fully excited. This was proved experimentally by noting 
the broad flat maximum in the R o vs. (o plot for the 
222-113 peak. We may conclude by way of extrapola- 
tion that this statement is certainly true also for the 
222-113 peak which is much weaker. The calculations 
have confirmed this assumption for both reflections 
(see Figs. 2 and 3). 

With this assumption in mind, an integrated inten- 
sity (over 0) measured at ~0= tp0 corresponding to the 
center of the fiat maximum in the R o vs. ~o plot is pro- 
port ional  to a doubly integrated intensity, with respect 
to 0 and ~o. In this way any o ther '  Umweganregung'  peak  
can be measured  at one single ~o value and put  on an 
absolute basis by comparing with the 222-113. 

(b) Theory. 222-113 and 222-113 integrated intensities 

Calculated values for the 222-113 and 222-]-]3 could 
be obtained by computing several rocking curves 
( I  vs. O) at different ~0 values, and then evaluating the 
area of similar R o vs. q~ plots (see Figs. 2 and 3). It is 
interesting to consider in detail a few of these I vs. 0 
plots. Fig. 4 shows two 222-113 I vs. 0 plots, at two 
different values of ~0. Note the high value of the max- 
imum reflectivity at A~0=0* (I=0.59), and how the 
area under the peak is reduced by a small azimuthal 
rotation (A~0= 15.5"). Fig. 2 shows that the full width 
at half height of the R o vs. ~o plot amounts to 23 se- 
conds of arc, for the 222-113 combination. These 
features are more or less common to all of the 'Um- 

* A~0=0 means ~0= ~P0 where ~P0 is the azimuth at which the 
113 node lies exactly on the Ewald sphere. ~00 was calculated 
using a kinematic procedure similar to that described by Cole, 
Chambers & Dunn (1962). Cases have been found (other than 
the 222-113 combination) where the fullest multibeam excita- 
tion was found for A~o slightly different from 0 (see Fig. 3). 
This is not surprising because we are using a dynamical theory 
and refraction effects are included. 
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weganregung' peaks investigated. The A~p=0 profile 
has an integrated intensity (over 0) comparable to that 
of a 'normal'  strong reflection. These considerations 
lead us to conclude, therefore, that the 'Umwegan- 
regung' peaks are much weaker than the 'normal '  re- 
flections only because the conditions for multibeam ex- 
citation are fulfilled within a very narrow range of  the 
vertical divergence. This circumstance had been pre- 
viously pointed out in connection with neutron dif- 
fraction work (Colella, 1972b) and explains why mul- 
tiple diffraction effects are negligible, in neutron and 
X-ray diffraction, when the primary reflection (the 222 
in this experiment) is strong. Of course this is not the 
case in our experiment. 

Fig. 4 shows that for zlcp ~ 0 the profile splits into two 
peaks, which is not surprising in view of the fact that 
with three beams interacting in the crystal two 
resonance errors are involved. It has been noted in all 
our multi-beam calculations that in general, for zlq~ ~ 0, 
the I vs. 0 profiles always consist of two peaks, one 
centered at the same value 00 close to the kinematic 
value 0B (as given by Bragg's law without refraction 
effects), the other one located at a 0 value such that the 
distance AO=O-Oo is approximately proportional to 
zI~o (AO changes sign with zltp). As Izl~l increases, both 
peaks shrink and eventually flatten down to negligible 
values. Since it is impractical to calculate integrated 
intensities R o for large ]A~pl, some sort of extrapolation 
procedure should be designed for extending the tails of 
the R o vs. q~ plots to + co, thereby minimizing trunca- 
tion errors. It has been found empirically that a 
Lorentzian profile [RO~K/(2+~2)] is a fairly good 
approximation for large ~p values, so that the areas under 
the tails can be evaluated analytically. 

The results are summarized in Table 1 where the 
absolute values of the 222-113__peak and the ratios be- 
tween the 222-113 and 222-113 integrated intensities 
are shown. It can be seen that the agreement between 
experimental and calculated values is excellent, and 
this is taken as a sufficient test of correctness for our 
theoretical and computational procedures. 

Table 1. Experimental and calculated integrated inten- 
sities o f  the 222-113 and 222-1-]3 Umweganregungpeaks 

(see definition in § 4) 

The ratios between the integrated intensities of two different 
Umweganregung peaks are listed in the right column. 

Ratio 
Integrated intensities 222-113 222-113/222-113 

Experiment 3.86 × 10 - 9  7"48 
Theory 3.67 × 10 - 9  7"28 

(c) Experimental. 222-113 double-crystal recking curve 
As a further test of our multi-beam theory, the 

double-crystal rocking curve 222-113 has been in- 
vestigated. In this experiment the two Ge (111) crystals 
~,re set parallel for the 222 forbidden reflection, their 

azimuths being adjusted in order to produce the 113 
simultaneous reflection. The beam diffracted by the 
first crystal had a negligible vertical divergence (less 
than 1') because the conditions for multiple diffraction 
are satisfied only within a very small range of the 
vertical divergence, as noted in the previous para- 
graph. 

The total power carried by this beam, with a cross 
section of approximately 1 mm 2, was of the order of 
5000 photons sec-1 with 30 kV and 25 mA. 

It is suggested that such a monochromator could be 
used in applications where a very small vertical di- 
vergence is required. An equivalent arrangement, in 
which two Ge crystals were used, was proposed by 
Williamson & Fankuchen (1959). In our experiment 
the two crystals are, so to speak, built in the same 
monolithic Ge crystal, because we exploit simultaneous 
diffraction from different Bragg planes.t 

t A suggestion to use multiple diffraction in order to obtain 
parallel beams of neutrons was made by Kottwitz (1971). 

R ° x I0  "s 

-~o 

~ (222-Ti3) 

i ~  L~ ~/seconds 
-2o -,'o ' ,~ 'o ~o 

Fig. 3. Same as Fig. 2. except that the simultaneous reflection 
is now 1--i"3. Note that full excitation occurs for AO:/:0. 
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Fig. 4. Computed profiles of three-beam reflectivities v s .  angle 
of incidence, for two different values of the azimuthal angle. 
/Itp = 0 corresponds to full excitation of the 113 simultaneous 
reflection. The abscissa 0 = 0 corresponds to the Bragg angle, 
without refraction correction, for the 'true' 222. 
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The anti-parallel arrangement was used, in order to 
eliminate any broadening due to non-monochromati- 
city of the X-ray source. Great care was exercised in 
the azimuthal orientation of the second crystal. The 
adjustment had to be done with an accuracy better 
than one minute of arc, owing to the small divergence of 
the incident beam. For the same reason, the tilting of 
the second crystal [rotation around an axis parallel to 
the (111) lattice planes and the diffraction plane] did 
not play any role in the half-width of the rocking 
curve, as opposed to what happens in a conventional 
double-crystal spectrometer. The peak intensity, after 
diffraction from the second crystal, was of the order of 
10 3 counts sec -1. 

It can be easily shown, by extending the ordinary 
two-beam theory of a double crystal spectrometer [see, 
for instance James (1965)], that the 222-113 rocking 
curve can be expressed by: 

R"°'p(,8) + R""'(,8) (25) 
F ( f l ) -  R~er.(fl)  -t- R~ar(fl) 

where fl is the angular position of the second crystal, F 
is the intensity reflected by the second crystal, and: 

R(f l )= I I I(cq (o)I(c~- fl, ~o)d~dgo 

Ro(fl) = I I 1(~, cp)d~d~o (26) 

where ~ and rp are to be integrated between - c o  and 
+ co, and I(c~, ~0) is the 222-113 reflectivity function as 
defined by equation (23) for a given polarization. In 
deriving equations (25) and (26) the change in the angle 
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Fig. 5. Double-crystal rocking curve of the 222-113 three- 

beam reflection, using the anti-parallel arrangement. Both 
crystals are set for the 222, their azimuths being adjusted for 
simultaneous excitation of the 113. 

of incidence 0 due to a small change of the azimuthal 
angle ~0 has been neglected, as in the ordinary two-beam 
theory (James, 1965). 

The rocking curve F(fl) (equation 25) has been 
evaluated using the same I vs. 0 profiles at different (p's 
used in deriving the diagrams presented in Figs. 2 and 
3. The result is shown in Fig. 5. The agreement be- 
tween theory and experiment is remarkably good, ex- 
cept in a narrow interval centered on the peak region. 
The experimental integrated intensity is about 10% 
smaller than the calculated value. No satisfactory ex- 
planation has been found for this discrepancy, except 
the fact that the experimental peak intensity was 
critically dependent on the ~0 adjustment. Since the 
mechanical accuracy of the azimuthal adjustment was 
of the order of + 30", whereas it is known that an 
azimuthal misorientation of 11" is sufficient to halve 
the R o integrated intensity (see Fig. 2), it is not un- 
reasonable to attribute the discrepancy between the 
peak values in Fig. 4 to azimuthal maladjustment. 
Given the complexities inherent in the experimental 
and computational aspects of this experiment, we feel 
that theory and experiment are in substantial agree- 
ment. 

(d) Effects of  lattice imperfections 
The present theory is valid only for perfect crystals. 

Since ordinary crystals used in crystal structure deter- 
mination are not as perfect as germanium, one might 
wonder to what extent is n-beam dynamical theory 
applicable to real crystals. To check this point the sur- 
face of the germanium sample was deliberately dam- 
aged by grinding with 120-240-400-600 SiC powders. 
The 333 double-crystal rocking curve in the anti- 
parallel arrangement was repeated for comparison with 
previous results obtained after etching. The full width 
at half maximum turned out to be 97" (instead of 6.6" 
as previously measured) and the integrated intensity 
was found 5.69 x 10 -s, to be compared with the perfect 
crystal value" 2 .08x10 -5 and the mosaic value: 
8.09x 10 -5. Owing to the relatively small mosaic 
spread introduced ( _  2') as compared with the vertical 
divergence of the incident beam (~_ 30'), it can still be 
assumed that an integrated intensity (with respect to 0) 
measured at some central value ~0o of the azimuth re- 
presents an integration with respect to ~0 as well. There- 
fore, one single integrated intensity for each Umweg- 
anregung peak measured at ~0 = ~00 represents a relative 
value directly comparable with the values presented in 
Table 1. It was found that the 222-113 peak increased 
by a factor of about 8, whereas the ratio between 222- 
113 and 222-1-]-3 increased by 2. This shows that the 
ratio between Umweganregung peaks is much less 
sensitive to lattice imperfections than the peaks them- 
selves. 

We believe that ordinary crystals used in crystal 
structure determination are more dynamical for low 
sin 0/2 reflections than our Ge crystal ground with SiC 
powder. In fact situations frequently arise when im- 
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perfections are deliberately introduced to make crystals 
more kinematic, by immersion in liquid nitrogen, for 
example. Therefore, it is not unrealistic to think of 
applying the present n-beam dynamical theory to com- 
plex organic or biological crystals. 

5. Conclusions 

It is pointed out that phase information can be ob- 
tained from multiple diffraction effects. More specif- 
ically, the phase of a hkl reflection relative to another 
h'k'l' reflection affects the intensities of both when they 
are excited simultaneously. A general theory for the 
computation of n-beam integrated intensities has been 
developed and adapted to the Bragg case. It is found 
that the approximations leading to linearization of the 
dispersion matrix in ordinary two-beam dynamical 
theory are not valid in the n-beam case when one or 
more of the diffracted beams propagate almost parallel 
to the crystal surface. If n beams are excited, therefore, 
there are 4n wave fields, of which only 2n survive in the 
infinite crystal. The two different states of polarization 
lead to two distinct sets of boundary conditions. A 
computer program has been developed for computing 
n-beam reflectivities as a function of 0, the angle of 
incidence, and co, the azimuthal angle. It is found in this 
work that the best way to compare theory with exper- 
iment is to consider doubly integrated intensities, with 
respect to 0 and ~0. 

The 222 azimuthal plot of germanium is considered 
in detail. Calculations and experimental measurements 
have been carried out for the 222-113 and 222-TT3 
Umweganregung peaks, whose integrated intensities 
differ by a factor of seven approximately. Since these two 
peaks involve crystallographically equivalent reflec- 
tions, the intensity difference is due to the different 
phases of 113 and TT3 with respect to 222. Substantial 
agreement is found between theory and experiment. 
Conceivably, the present theory could be used to sort 
out phases from n-beam intensities. Since ordinary 
crystals are not as perfect as germanium the effect of 
lattice imperfections has been investigated by repeating 
the same measurements on a heavily damaged surface. 
It was found that, although the two integrated intensi- 
ties were greatly increased, their ratio did not change by 
more than a factor of 2. Since most of the crystals used 
in crystal structure determination exhibit severe extinc- 
tion effects for low-order reflections, it is suggested that 
the ratio between integrated intensities of Umwegan- 
regung peaks can be used for phase identification in X- 
.ray diffraction. 

Thanks are due to Professor S. Moss who kindly 
provided the dislocation-free Ge crystal. This work was 
supported by the National Science Foundation, Mater- 
ials Research Laboratory Program, Grant GH 33574. 
A substantial amount of computing time was made 
available by the Computing Center at Purdue Univer- 
sity, 

APPENDIX 

The proof is entirely analogous to that used in ordinary 
algebra for determining the roots of an n-order poly- 
nomial by diagonalizing the associated n-order matrix. 

We will proceed backwards. Let us consider a 2 x 2 
linear system of first order homogeneous equations: 

(×1 
o (A-l) 

• X2 X2 I 

where/1 is a complex number, and all other symbols 
denote matrices of 2n-order. V, - B, I and O are square 
matrices, whereas Xt and ×2 are single column matrices. 
The system (A-l) can be written: 

VXl-B×2=flXx 
Xi =//X2 • 

Multiplying the first equation by p: 

//VXl -//BX2 =//2Xl 
and 

VpXl - BpX2 =//2Xl 

but pX==X~, therefore 

V//X 1 - -  BXi  ://2X I 

which can be written: 

( / t z -v / l  + B)X, =0  (A-2) 

The last equation is entirely equivalent to the system 
(A-I):  Therefore the eigenvalues are the same. It is 
also clear that the eigenvectors Xx of (A-2) are the first 
2n eigenvectors of (A-I). 
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Etude des Phases Haute Temperature de NaNbO3 et des Correlations qui les Caraeterisent, 

BY F.D~NOYER, R. COMES, M. LAMBERT ETA. GUINIER 

Laboratoire associd au CNRS, Laboratoire de Physique des Solides, Universitd Paris-Sud, 91405-Orsay, France 

(Recu le 6 octobre 1973, acceptk le 14 novembre 1973) 

From the study of X-ray diffuse scattering diagrams, it has been shown that the diffuse scattering 
located along three equivalent reciprocal rods (100) in the cubic phase disappears successively at 
641,575 and 520°C. The interpretation is given in terms of planar local order. 

Introduction 

Parmi les perovskites, NaNbOa pr~sente l'int6r& tout 
particulier de subir de nombreuses transitions de phase 
structurales, correspondant fi des 6tats para61ectriques, 
antiferro61ectriques et ferro61ectriques (Cross & Nichol- 
son, 1955). Nous utiliserons ici la nomenclature des 
phases introduite par Lefkowitz, Lukaszewicz & Me- 
gaw, (1966), que nous reproduisons Tableau 1. 

Les &udes par les m&hodes classiques de d6termina- 
tion de structures ont donn6 les r6sultats suivants" au- 
dessus de 641 °C, les cristaux ont la structure cubique 
du type perovskite; les atomes de Na et de Nb sont 
situ6s respectivement au sommet et au centre du cube, 
alors que les atomes d'oxygkne aux centres des faces 
forment un octakdre rdgulier; r6cemment, Glazer & 
Megaw (1972) et Ahtee, Glazer & Megaw (1972) ont 
d6termin6 les structures des phases T2, T~ et S, stables 
respectivement entre 641 et 575, 575 et 520 et 520 et 
480°C. La sym6trie moins 61ev6e de ces diff6rentes 
phases est conditionn6e par les rotations des atomes 
d'oxygkne autour des axes (100) de l'octakdre. Ceci se 
traduit par un 16ger changement des param&res de la 
maille cristalline. 

Dans la phase Tz, de sym6trie t6tragonale, les atomes 
sont d6plac6s comme le montre la Fig. l(a) par la 
rotation de l'octa~dre d'oxyg~ne autour de l'axe c 
(Glazer & Megaw, 1972). A cette rotation, viennent 
s 'ajouter celles autour de l'axe a dans• la phase 7"1, puis 
autour de l'axe b dans la phase S (Ahtee et al., 1972). 

. . 

* Cet article fait partie du travail de la th6se de doctorat 
6s-sciences physiques de F. D6noyer, enregistr6e au CNRS 
sous le N ° A.O, 9547, 

Les phases 7"1 e t  S ont toutes deux la sym6trie ortho-' 
rhombique. 

On volt sur les modules A du Tableau 1 queleddplace- 
ment de chacun des atomes de l'octakdre d'oxygkne 
rdsulte de deux rotations au maximum. 

Les structures qui viennent d'&re d6crites corre- 
spondent ~t des structures moyennes. La seule observa- 
tion des r6flexions de Bragg ne permet pas de d6cider 
si la structure de toutes les mailles est constante ou si 
elle fluctue d'une maille fi l 'autre, les fluctuations 
provenant du d6placement des atomes autour de leurs 
positions moyennes. C'est ainsi que le module B de la 
Fig. 2 est aussi valable que le module A pour expliquer 
l'ensemble des taches de diffraction du cristal. En effet, 
dans le module d6sordonn6 B, si l 'atome d'oxyg~ne 
occupe avec une 6gale probabilit6 les deux sites pos- 
sibles, sa position moyenne n'est rien d'autre que celle 
d6termin6e dans la structure fi p6riodicit6 parfaite 
[Fig. 2(a)]. 

Du point de vue des r6flexions de Bragg, une r6parti- 
tion statistique des rotations dans un sens ou dans 
l'autre, ( et ) , autour de l'axe a (modUle B) introduit 
en fait un facteur d'att6nuation par rapport  ~t l 'absence 
de rotation autour-de cet axe (modUle A), mais ce fac- 
teur ne se traduira du point de vue exp6rimental que 
par une faible augmentation du facteur Debye-Waller 
tr~s difficile ~t d6celer. 
• Seule l'intensit6 diffus6e en dehors des r6flexions de 
Bragg peut nous renseigner de faqon pr6cise sur un tel 
d6sordre, qu'il soit statique ou dynamique. 

L' objet de cet article est de montrer, fi partir de l'&ude 
des diffusions 'anormales' de rayons X, que la phase 
cubique et les phases 7"2 et 7"1 sont 'd&ordonndes', que 
les modules I a, II a e t  IIIa doivent &re respectivement 


